A best first search exact algorithm for the Multiple-choice Multidimensional Knapsack Problem
نویسندگان
چکیده
منابع مشابه
A best first search exact algorithm for the Multiple-choice Multidimensional Knapsack Problem
In this paper, we propose an optimal algorithm for the Multiple-choice Multidimensional Knapsack Problem MMKP. The main principle of the approach is twofold: (i) to generate an initial feasible solution as a starting lower bound, and (ii) at different levels of the search tree to determine an intermediate upper bound obtained by solving an auxiliary problem called MMKPaux and perform the strate...
متن کاملAn exact algorithm for the fixed-charge multiple knapsack problem
We formulate the fixed-charge multiple knapsack problem (FCMKP) as an extension of the multiple knapsack problem (MKP). The Lagrangian relaxation problem is easily solved, and together with a greedy heuristic we obtain a pair of upper and lower bounds quickly. We make use of these bounds in the pegging test to reduce the problem size. We also present a branch-and-bound (B&B) algorithm to solve ...
متن کاملAn exact algorithm for the budget-constrained multiple knapsack problem
This paper is concerned with a variation of the multiple knapsack problem (MKP) [5, 6], where we are given a set of n items N = {1, 2, . . . , n} to be packed into m possible knapsacks M = {1, 2, . . . ,m}. As in ordinary MKP, by w j and p j we denote the weight and profit of item j ∈ N respectively, and the capacity of knapsack i ∈ M is ci. However, a fixed cost fi is imposed if we use knapsac...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Combinatorial Optimization
سال: 2006
ISSN: 1382-6905,1573-2886
DOI: 10.1007/s10878-006-9035-3